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Abstract

In this paper we propose a Maxwellian thermo-viscoelastic approach to the problem of phase transformation in

shape memory alloys. An explicit temperature-dependent non-monotone piecewise linear stress–strain relation is

considered and the corresponding free energy function is used to establish the heat propagation equation. The heat

exchange between the material and its environment is also taken into account. The numerical simulations of three end-

displacement rates lead to serrated hysteresis loops and result in inhomogeneous deformations and exothermic/endo-

thermic behavior during loading/unloading tests. It is shown that the influence of the strain rate on the size and shape of

the hysteresis loop is due in fact to the heat exchange between the bar and its environment. The predictions are

compared qualitatively with experimental results. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A great deal of effort has been devoted in the last four-decade history of shape memory alloys (SMAs)
within both mechanics and metallurgy communities to the understanding and modelling of two remarkable
properties of these materials: the shape memory effect and the pseudoelastic behavior. It is well known that
a phase transformation between two solid state phases called austenite (A) and martensite (M) is respon-
sible for both effects which can be induced by either changes in temperature or in stress.

Many micromechanical aspects of this material behavior have been elucidated within such efforts, in-
cluding for example the capture of crystallographic aspects, dislocation microstructures and twin bound-
aries (see for instance Otsuka and Wayman (1998)). Despite these developments the connection between
microscopic and macroscopic behavior is still not fully developed due to the complexity of the problem.
Moreover, the variety of new structural applications which exploit the material’s special properties requires
appropriate phenomenological models able to incorporate relevant micromechanical features.
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There are several viewpoints in the constitutive modelling of these materials and a rich literature on this
subject. In the following we shall focus more on the classical one, mainly based on the thermoelasticity
theory with multiple energy-wells (or, equivalently with a non-monotone stress–strain relation) for certain
ranges of strain and temperature, and on related approaches. In these theories each energy-well is identified
with a phase of the material.

Beginning with the paper by Ericksen (1975) there are numerous and important studies which have been
carried out in phase transformations that appeal to the minimization of the stored energy of the mixed
phases and use subtle mathematical techniques (see for instance Ball and James (1987) and James (1981)) to
determine the amount of phases that coexist and the way they are juxtaposed. In fact this approach does
not address the process of phase transformation rather it describes the coexistence of the phases after the
transformation has taken place. On the other side, if we consider initial and boundary value problems for
the corresponding field equations we get ill-posed problems in the sense of Hadamard.

Thus an important and open problem is to find simple and appropriate dissipative mechanisms to be
included in the constitutive description of the materials such that the model be able to describe the process
of phase transformation, i.e., the nucleation and the propagation of phases.

Such an example is the thermodynamical framework developed by Abeyaratne and Knowles (1993)
which in addition to the usual thermoelastic properties contains a nucleation criterion and a kinetic rela-
tionship for the motion of the interfaces.

A new approach to the problem of phase transformations or strain localization in materials exhibiting
material instabilities has been advanced in a one-dimensional and isothermal context by Suliciu (1989) (see
also F�aaciu, 1991; Suliciu, 1992; F�aaciu and Suliciu, 1994; Mih�aailescu-Suliciu and Suliciu, 1993 and the ref-
erences therein). This formulation is based on a rate-type viscoelastic constitutive equation with Maxwellian
viscosity. Thus one considers the rate of stress, the rate of strain and the over-stress function as being linearly
related, while the equilibrium states are situated on a stress–strain curve corresponding to a non-monotone
elastic material. This simple rate-dependent constitutive equation has the capability to describe relaxation,
creep and instantaneous processes of the material. In fact this approach is equivalent to a model for a simple
body with one internal variable (the inelastic strain). Its strain and stress-dependent free energy function is
non-convex and its energetical properties were extensively investigated (see Suliciu (1998) and the references
therein). Thus one obtains a viscoelastic approach to non-monotone elasticity which no longer leads to ill
posed problems since the corresponding PDE system is hyperbolic. The nucleation and growth of one phase
into another, the creation and propagation of phase boundaries is automatically accounted for this model. A
detailed investigation on the way the dissipation mechanism contained in this model describes the process of
nucleation and propagation of phase boundaries can be found in F�aaciu (1996).

Recent experimental studies of SMAs (Leo et al., 1993; Lin et al., 1994; Shaw and Kyriakides, 1997) have
exhibited a strong coupling between their mechanical and thermal properties and have clarified many as-
pects of their interactions.

In order to model the thermal effects which accompany phase transitions in SMAs we consider in this
paper a rate-type semilinear thermo-viscoelastic approach to nonlinear and non-monotone thermoelasticity
(a more general framework has been considered by Suliciu (1998)). Moreover we include here the thermo-
mechanical coupling of the material with its environment by using a Newton’s type convection mode of
heat transfer.

The content of this paper is the following. In Section 2 we formulate the balance laws for a one-
dimensional setting which take into account the heat exchange of the bar with its surrounding. Section 3
describes the constitutive assumptions and their compatibility with the second law of thermodynamics.
Based on the thermo-mechanical properties of SMAs we consider an equilibrium stress–strain-temperature
relation related with the one proposed by Abeyaratne et al. (1994). Next, we derive the stress–strain-
temperature dependent free energy function of the viscoelastic model as well as the three-well equilibrium
energy function. Details are given in Appendices. In Section 4 we carry out a number of simulations and
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compare them in detail with the experimental results obtained by Shaw and Kyriakides (1997). The ob-
jective of these calculations is to establish how effectively our continuum-type model can reproduce the
morphology of deformations and thermal changes observed in experiments. We show that the simulations
successfully capture the nucleation and evolution of deformation fronts and the corresponding distribution
of the temperature fields observed in laboratory experiments.

A related approach to the isothermal problem of phase transition in solid bodies has been considered by
Pego (1987). His formulation is based on a viscoelastic model with Newtonian (or Kelvin–Voight) viscosity
for which the rate of strain is proportional with the over-stress function while the equilibrium stress–strain
relation is also non-monotone. This rate-type constitutive relation can describe only creep processes, but
not relaxation and instantaneous processes. Thus the PDE system which describes the motion of a thin
viscoelastic bar is parabolic. The non-convex free energy function of this model is just the free energy
function of the associated elastic model, i.e., it is only strain-dependent. The predictions of this model have
been investigated by Pego (1987) for a dead-load experiment while the case of strain-controlled problems
has been investigated by Vainchtein and Rosakis (1999) (see also the references therein). In a different
framework the Newtonian viscoelastic constitutive equation has also been used to establish a particular
kinetic relation at the interface between propagating phases (Abeyaratne and Knowles, 1991).

There are many similarities between the viscoelastic Maxwellian and Newtonian approaches of non-
monotone elasticity. First, no other supplementary constitutive information in the form of a nucleation
criterion or kinetic law is necessary. Both contain a dissipation mechanism which allows the description of
nucleation and phase propagation during strain-controlled experiments and exhibit a hysteretic behavior
with serrations on the two horizontal branches of the hysteresis loop. In both cases inertia forces have to be
included in the field equations as they play an essential role when instability phenomena accompanying
phase transition processes develop. An investigation concerning the differences between the predictions of
these two models for the same input data should be made. This approach was extended and analyzed by
Vainchtein (2001) for the case of temperature-dependent non-monotone equilibrium stress–strain relations,
but without considering the thermal changes through the lateral surface of the bar.

2. Basic equations

We consider a thin cylindrical bar of length L, mass density . and constant cross-sectional area ðAÞ with
X the coordinate along its symmetry axis in the reference configuration. Assuming that all field quantities
are uniform over a cross-section, i.e., they only depend on ðX ; tÞ where t > 0 is time, we consider a purely
one-dimensional setting.

The balance of momentum equation for the bar is given by

d

dt

Z X2

X1

.vðX ; tÞAdX ¼
Z X2

X1

.bðX ; tÞAdX þ rðX2; tÞA� rðX1; tÞA; ð1Þ

which must hold for any X1;X2 2 ½0; L�, where ðv; r; bÞ are the particle velocity, the nominal stress (force per
unit area in the reference configuration) and the body force per unit mass, respectively.

In order to take into account the heat exchange of the bar with its surrounding we assume that the heat
that enters or leaves the specimen through its lateral surface is equal to �xðh � h0Þ, where x ¼ const:>0, is
a material parameter, h being the absolute temperature and h0 being the ambient temperature.

Then the balance of energy equation can be written as

d

dt

Z X2

X1

.
v2

2

�
þ e

�
AdX ¼

Z X2

X1

.ðbvþ rÞAdX þ Aðrv� qÞðX2; tÞ � Aðrv� qÞðX1; tÞ �
Z
Alat

xðh � h0Þds;

ð2Þ
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for any X1;X2 2 ½0; L�, where Alat is the lateral surface of the bar between X1 and X2, and ðe; q; rÞ are the
specific internal energy, the axial heat flux and the heat supply per unit mass, respectively.

The second law of thermodynamics is taken under the form

d

dt

Z X2

X1

.gAdX P
Z X2

X1

.r
h
AdX � A

q
h

� �
ðX2; tÞ þ A

q
h

� �
ðX1; tÞ �

Z
Alat

xðh � h0Þ
h

ds; ð3Þ

for any X1;X2 2 ½0; L�, where g is the specific entropy.
The PDE system corresponding to (1)–(3) is therefore

.
ov
ot

� or
oX

¼ .b;

oe
ot

� ov
oX

¼ 0;

.
oe
ot

� r
oe
ot

þ oq
oX

¼ � 2

R
xðh � h0Þ þ .r;

.
og
ot

þ o

oX
q
h

� �
P � 2

R
xðh � h0Þ

h
þ .r

h
;

ð4Þ

with R is the radius of the bar, where we also have considered the compatibility condition (4)2 between
strain and velocity fields and R denotes the radius of the bar.

3. Constitutive assumptions

In order to have a complete PDE system describing the thermo-mechanical motion of the bar we need to
add to the system (4) a set of constitutive relations for stress r, internal energy e and axial flux q. Recall we
have already made a constitutive assumption by introducing the material parameter x characterizing the
heat exchange with the heat bath surrounding the bar.

In this section we briefly present our continuum thermo-mechanical setting for shape memory bars. The
constitutive assumptions considered here are taken from the general constitutive framework presented in
F�aaciu and Mih�aailescu-Suliciu (2001a).

We make the following constitutive assumptions:

or
ot

¼ E
oe
ot

� kðr � rRðe; hÞÞ;

e ¼ êeðe; h; rÞ;

q ¼ �j
oh
oX

;

ð5Þ

where E ¼ const: > 0 is the dynamic Young’s modulus, k ¼ const: > 0 is a Maxwell type viscosity coeffi-
cient (i.e., 1=k is a relaxation time of the material) and j ¼ const: > 0 is the heat conductivity coefficient in
the Fourier law.

r ¼ rRðe; hÞ is called the thermoelastic equilibrium surface and is defined on a domain D ¼ ðe	1ðhÞ;
e	2ðhÞÞ 
 ðh	

1; h
	
2Þ � ð�1;1Þ 
 ð0;1Þ, where e	1ðhÞ and e	2ðhÞ are two continuous and piecewise smooth

functions on ðh	
1; h

	
2Þ.

The internal energy function êe given by (5)2 is defined on a constitutive domain
~DD � ð�1;1Þ 
 ðh	

1; h
	
2Þ 
 R which requires a detailed characterization presented in F�aaciu and Mih�aailescu-

Suliciu (2001a).
The existence of a free energy function ŵw ¼ ŵwðe; h; rÞ (or entropy function ĝg ¼ ĝgðe; h; rÞ)

w ¼ ŵwðe; h; rÞ ¼ êeðe; h; rÞ � hĝgðe; h; rÞ; ð6Þ
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results as a requirement of the second law of thermodynamics (4)4 which may also be written in the form

.
ow
ot

6 r
oe
ot

� .g
oh
ot

� q
h
oh
oX

: ð7Þ

We have shown that the constitutive structure (5) has a free energy function ŵw ¼ ŵwðe; h; rÞ on ~DD com-
patible with the second law of thermodynamics iff

oŵw
oe

þ E
oŵw
or

¼ r
.

and
oŵw
or

ðr � rRðe; hÞÞ6 0: ð8Þ

While the entropy function ĝg ¼ ĝgðe; h; rÞ is given by

ĝg ¼ � oŵw
oh

: ð9Þ

Moreover we have shown in F�aaciu and Mih�aailescu-Suliciu (2001a) (extending our result in F�aaciu and
Mih�aailescu-Suliciu (1987)) that the solution w ¼ ŵwðe; h; rÞ of the system (8) exists and it is unique (modulo
an additive function of temperature) iff

rRðe1; hÞ � rRðe2; hÞ
e1 � e2

< E for any e1 6¼ e2 2 ðe	1ðhÞ; e	2ðhÞÞ and h 2 ðh	
1; h

	
2Þ ð10Þ

and has the form

.ŵwðe; h; rÞ ¼ r2

2E
� r2

Rð~ee; hÞ
2E

þ
Z ~ee

0

rRðs; hÞdsþ /ðhÞ; ð11Þ

where ~ee is uniquely defined by relation r � Ee ¼ rRð~ee; hÞ � E~ee.
In this approach we construct rather than postulate the thermodynamic potentials starting from the

constitutive information available for the equilibrium stress–strain-temperature relation. Therefore, ac-
cording to (11), all three constitutive functions ðŵw; ĝg; êeÞðe; h; rÞ are completely determined on ~DD (modulo an
additive function of temperature) by the equilibrium surface rRðe; hÞ and the dynamic Young’s modulus E.
In order to determine the unknown function /ðhÞ in (11) we need additional information on the thermal
behaviour of the material. As usual we assume in this paper that the specific heat at constant strain of the
thermoelastic material r ¼ rRðe; hÞ in the austenitic phase is constant (see (B.2)). Let us note that knowing
the equilibrium surface and the specific heat at constant strain means knowledge of the equilibrium thermo-
mechanical behavior of the material and the additional knowledge of dynamic Young’s modulus E extends
only the mechanical properties outside equilibrium. A detailed analysis on this subject is done in F�aaciu and
Mih�aailescu-Suliciu (2001a) in a more general framework.

If we denote by ŵwRðe; hÞ ¼ ŵwðe; h; rRðe; hÞÞ the free energy function at equilibrium and by
ĝgRðe; hÞ ¼ ĝgðe; h; rRðe; hÞÞ the entropy function at equilibrium we find the classical thermostatic relations,
i.e.,

rRðe; hÞ ¼ q
oŵwR

oe
ðe; hÞ and ĝgRðe; hÞ ¼ � oŵwR

oh
ðe; hÞ: ð12Þ

It is known that for the one-dimensional theory the bulk behavior of a thermoelastic material which can
describe phase transitions phenomena is characterized by stress–strain-temperature relations which are
non-monotone with respect to strain for certain ranges of temperature, or equivalently by non-convex free
energy functions in strain for the same temperature intervals. It is obvious that condition (10) on the
constitutive functions entering (5)1 allows us to consider such equilibrium stress–strain-temperature rela-
tions. A simple example will be considered in the following. For our thermo-viscoelastic model whenever
the equilibrium free-energy function ŵwRðe; hÞ is non-convex with respect to strain on certain intervals of
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temperature the strain–stress-temperature dependent free energy function ŵwðe; r; hÞ is also non-convex but
with respect to (r � Ee) for the corresponding ranges of temperature.

It is useful to note that the balance of energy equation (4)3 can be written now only by means of the free
energy function, as

.h
o2ŵw

oh2

oh
ot

¼ �j
o2h
oX 2

� k.
oŵw
or

ðr � rRðe; hÞÞ þ k.h
o2ŵw
ohor

ðr � rRðe; hÞÞ þ
2x
R

ðh � h0Þ ð13Þ

and relations (4)1;2, (5)1 and (13) form a complete PDE system for the unknown functions ðv; e; h; rÞ.
The first term in the right-hand side of the heat propagation equation (13) describes the thermal dissi-

pation through axial conduction, the second one the internal dissipation, the third one is related with the
latent heat released or absorbed by the material while the last one gives account on the gain or loss of heat
across the lateral surface of the bar.

We propose now an explicit stress–strain-temperature relation r ¼ rRðe; hÞ that characterizes the re-
sponse of a three-phase material. The thermo-elastic equilibrium surface we consider here is very close to
that derived from physical considerations on the behavior of shape memory alloys by Abeyaratne et al.
(1994), but there are differences which will be pointed out in the following.

Thus, we consider a material which exists in a high-temperature phase austenite (A) and has two variants
(M�) and (Mþ) of a low-temperature phase martensite. The thermo-mechanical assumptions we consider
here are the following. There are two critical temperatures hm > h	

1 and hM < h	
2 such as, for h > hM the

material only exists in its austenite form no matter what the stress level is, whereas for h < hm the material
only exists in its martensitic forms. For h 2 ½hm; hM � all three phases are available to the material.

The stress response function rR must therefore be a monotonically increasing function of e for h > hM .
At each temperature h 2 ½hm; hM � as the strain increases we require rRð�; hÞ to increase too for
e 2 ðe	1ðhÞ; e�mðhÞÞ [ ðe�MðhÞ; eþMðhÞÞ [ ðeþmðhÞ; e	2ðhÞÞ and to decrease over the intervals ðe�mðhÞ; e�MðhÞÞ and
ðeþMðhÞ; eþmðhÞÞ. For h < hm, rRð�; hÞ has to be a monotonically increasing function with respect to strain on
only two intervals, i.e., ðe	1ðhÞ; e�mðhÞÞ [ ðeþmðhÞ; e	2ðhÞÞ while on the remaining one ðe�mðhÞ; eþmðhÞÞ it is a
monotonically decreasing one.

Experiments on SMAs (see for instance Otsuka et al. (1976)) show that a material in a single phase has in
general a linear thermo-elastic behavior. Thus we can assume that the elastic moduli of the austenite phase
ðAÞ and martensite variants ðM�Þ are constant and equal to E1 > 0 and E3 > 0, respectively. Moreover, we
suppose here that the elastic moduli of the unstable (spinodal) regions ðI�Þ are also constant and equal to
�E2 < 0.

Therefore for h 2 ðhm; hMÞ we have

rRðe; hÞ ¼

E3ðe � e�mðhÞÞ þ r�
mðhÞ for e	1ðhÞ < e6 e�mðhÞ;

�E2ðe � e�mðhÞÞ þ r�
mðhÞ for e�mðhÞ < e < e�MðhÞ;

E1ðe � e�MðhÞÞ þ r�
MðhÞ for e�MðhÞ6 e6 eþMðhÞ;

�E2ðe � eþMðhÞÞ þ rþ
MðhÞ for eþMðhÞ < e < eþmðhÞ;

E3ðe � eþmðhÞÞ þ rþ
mðhÞ for eþmðhÞ6 e < e	2ðhÞ;

8>>>><
>>>>:

ð14Þ

where according to relation (10) the following conditions have to be satisfied

0 < E1 ¼ const: < E; 0 < E3 ¼ const: < E: ð15Þ
Here the functions r�

MðhÞ ¼ rRðe�MðhÞ; hÞ and r�
mðhÞ ¼ rRðe�mðhÞ; hÞ are the local maxima and minima with

respect to e of the stress–strain curve at constant temperature. In our approach we call r ¼ r�
MðhÞ

(e ¼ e�MðhÞ) the stress (strain) required for ðAÞ ! ðM�Þ transformations, whereas r ¼ r�
mðhÞ (e ¼ e�mðhÞ) the

stress (strain) required for the reverse transformations ðM�Þ ! ðAÞ when h 2 ½hm; hM �.
The boundary curves e ¼ e�mðhÞ and e ¼ e�MðhÞ fix the limits of the regions of the ðe; hÞ-plane on which the

respective phases ðAÞ, ðMþÞ and ðM�Þ exist (see Fig. 1a), while their images through the function
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r ¼ rRðe; hÞ, onto the ðr; hÞ-plane bound the regions which show the phases that are available to a particle
at a given ðr; hÞ (see Fig. 1b). The expressions of these functions and the way they are derived are explicitly
given in Appendix A.

In our approach we have considered different elastic moduli for the ðAÞ phase and martensitic variants
ðM�Þ, but the main difference between our stress–strain-temperature relation and that considered by
Abeyaratne et al. (1994) concerns the dependence on h of the local minima/maxima of the stress–strain
curve in ðMþÞ=ðM�Þ phases. Thus, in the paper mentioned above rþ

mðhÞ ¼ E1Mðh � hmÞ � E1ðM � mÞ

ðh � hMÞ � E1cT , where cT ¼ const: > 0 is called the transformation strain. Consequently, the slope E2 of
the straight line connecting ðeþMðhÞ; rþ

MðhÞÞ and ðeþmðhÞ; rþ
mðhÞÞ is temperature-dependent, i.e., E2ðhÞ ¼

E1½1� cT=ðM � mÞ=ðh � hMÞ�, becomes unbounded when h ! hM and turns rR into a discontinuous func-
tion.

Our approach has the advantage that it allows to extend in a continuous manner outside the interval
ðhm; hMÞ the functions e�MðhÞ, e�mðhÞ and r�

MðhÞ, r�
mðhÞ and thus to capture in a single linear description of the

type (14) the thermo-mechanical considerations described at the beginning of this section for the entire
range of temperature ½h	

1; h
	
2� � ½hm; hM �.

For a better comparison with the equilibrium surface considered by Abeyaratne et al. (1994) we give
bellow the explicit expression of rRðe; hÞ when h 2 ½hm; hM � (see also Fig. 2)

Fig. 1. (a) Austenite ðAÞ, martensite ðM�Þ and unstable ðI�Þ regions in the ðe; hÞ-plane. (b) Available phases at a given ðr; hÞ.

Fig. 2. Stress–strain curves at constant temperature h described by relation (16) for the numerical entries (18).
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rRðe; hÞ ¼

E3e � E3aðh � hT Þ �MðE1 � E3Þðh � hmÞ
�ðM � mÞðE2 þ E3Þðh � hMÞ if e6 e�mðhÞ;
�E2e þ E2aðh � hT Þ �MðE1 þ E2Þðh � hmÞ if e 2 ðe�mðhÞ; e�MðhÞÞ;
E1e � E1aðh � hT Þ if e 2 ðe�MðhÞ; eþMðhÞÞ;
�E2e þ E2aðh � hT Þ þMðE1 þ E2Þðh � hmÞ if e 2 ðeþMðhÞ; eþmðhÞÞ;
E3e � E3aðh � hT Þ þMðE1 � E3Þðh � hmÞ
þðM � mÞðE2 þ E3Þðh � hMÞ if e P eþmðhÞ:

8>>>>>>>>>><
>>>>>>>>>>:

ð16Þ

Now by using relation (11) we can explicitly determine, modulo a function /ðhÞ, the free energy function
for our thermo-viscoelastic model when its equilibrium stress–strain-temperature relation is described by
(16). The complete expressions of the free energy function wðe; h; rÞ of the viscoelastic model and of the
equilibrium free energy function wRðe; hÞ are given in Appendix B. These expressions were used through the
heat propagation equation (13) in the numerical computations presented in the next section.

4. Numerical study: strain-controlled and relaxation experiments

In this section we investigate the predictions of our model in a loading–unloading strain-controlled
experiment interrupted by a relaxation one. Such laboratory tests were performed in a systematic manner
by Shaw and Kyriakides (1997) on a NiTi shape memory alloy and illustrate how the apparent material
response is strongly influenced by the interaction between thermal and mechanical effects.

We consider a uniform bar of radius R, initially at rest, unstressed at temperature h0 2 ½hm; hM � for which
the material is in the austenitic phase. The ambient temperature around the specimen is assumed to be
constant and equal to h0, both ends being thermally isolated. The bar, firmly fixed at one end, is subjected
to a traction–compression test with a constant velocity v	. Between the loading and the unloading exper-
iment we simulate a pause, during which both ends of the specimen are fixed, i.e., the length of the bar is
maintained constant (relaxation experiment).

We describe the analysis associated with these loading conditions in some details while the analysis
corresponding to other thermo-mechanical loadings as stress- and temperature-controlled problems will be
presented elsewhere.

Thus we consider for the PDEs system (4)1;2, (5)1, (13) the following initial boundary value problem:

ðe; r; v; hÞðX ; 0Þ ¼ ð0; 0; 0; h0Þ for any X 2 ½0;L�;
vð0; tÞ ¼ v	; hð0; tÞ ¼ h0; vðL; tÞ ¼ 0; hðL; tÞ ¼ h0 for any t 2 ½0; t1Þ;
vð0; tÞ ¼ 0; hð0; tÞ ¼ h0; vðL; tÞ ¼ 0; hðL; tÞ ¼ h0 for any t 2 ½t1; t2Þ;
vð0; tÞ ¼ �v	; hð0; tÞ ¼ h0; vðL; tÞ ¼ 0; hðL; tÞ ¼ h0 for any t 2 ½t2; t3Þ:

ð17Þ

In order to study the qualitative as well as the quantitative prediction of our model we choose realistic
values of the material parameters appropriate for a Cu–Zn–Ni shape memory alloy (see for instance
Abeyaratne et al. (1994)). We used the following numerical entries:

E ¼ 31:5 GPa; E1 ¼ 30 GPa; E2 ¼ 0:5 GPa; E3 ¼ 20 GPa;

k ¼ 104=s; q ¼ 8000 kg=m
3
;

a ¼ 1:6
 10�6=�C; j ¼ 20 W=m=�C; C ¼ 500 J=kg=�C; x ¼ 20 W=m
2
=�C;

hm ¼ 280 �K; hM ¼ 10000 �K; hT ¼ 283:3 �K;

M ¼ 10:1371
 10�5=�C; m ¼ 9:7253
 10�5=�C:

ð18Þ
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The length of the bar is L ¼ 20 mm, its radius R ¼ 2 mm and h0 ¼ 36:7 �C. The experiments were
performed at constant strain rates _eee ¼ v	=L ranging from 5
 10�4=s to 5
 10�2=s.

For the above input data the stress required for ðAÞ ! ðMþÞ transformation increases at the rate
drMðhÞ=dh ¼ 3:04113 MPa/�C, while the stress required for the reverse transformation ðMþÞ ! ðAÞ
changes at the rate drmðhÞ=dh ¼ 3:04114 MPa/�C.

Like in Abeyaratne et al. (1994), the reference temperature hT 2 ðhm; hMÞ used in our numerical entries
(18) has the property that the Maxwell stress for ðAÞ� ðMÞ transformations is zero at h ¼ hT , and we call it
the transformation temperature.

To obtain the numerical solution for the above initial-boundary value problem we built a first-order
approximation scheme. The relation between the time integration step Dt and the mesh size DX is
DX ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
Dt, where Dt verifies some numerical stability conditions which will be analyzed elsewhere. In

the numerical experiments presented below we have used 81 nodes on the interval ½0; L�.
Shaw and Kyriakides (1997) were able to correlate the thermo-mechanical events of the ðAÞ $ M phase

transformations using full field monitoring of the deformation and temperature profiles of the specimens
during mechanically unstable regimes associated with the pseudoelastic material response. The same as in
laboratory experiments, in order to explain the thermo-mechanical events that take place during the hys-
teresis loop we need to simultaneously record and examine the strain and temperature distribution in the
bar as well as the end-stress rð0; tÞ versus the engineering strain eeðtÞ ¼ ð1=LÞ

R L
0

eðX ; tÞdX . Thus, the
evolution of the two phases as well as their thermal behavior is shown in the form of a 3D diagram.

4.1. Experiment at displacement rate of _eee ¼ v	=L ¼ 5
 10�4 s�1

The loading experiment lasts until t1 ¼ 92:67 s when rð0; tÞ ¼ 140 MPa and it is followed by a 10 s
relaxation test. Thus, the unloading process starts at t2 ¼ 102:67 s and finishes at t3 ¼ 195:35 s when
rð0; tÞ ¼ 0:0 MPa.

In this experiment the distribution of strain and temperature over the specimen was recorded at intervals
of 1.0079 s and plotted as 3D diagrams in Fig. 3(b)–(d). We labeled with small circles the corresponding
positions on the loading part of Fig. 3(a).

The way our model describes the pseudoelastic behavior is shown in Fig. 3(a). When loading starts, ðAÞ
phase deforms thermo-elastically until a certain transformation stress level is attained. The deformation is
practically homogeneous over the entire specimen while the temperature slightly decreases about 0.009 �C
except for the ends of the bar where isothermal end conditions were imposed.

Martensite nucleates for the first time inside the specimen and an increase of the temperature in the
neighborhood of the transformed zone is observed (Fig. 3(b)). This event is accompanied by a drop in stress
of about 7.0 MPa. Subsequently the two fronts are arrested while the temperature in the specimen dissipates
through axial diffusion and radiation. Further, the martensite nucleates symmetrically at the ends of the
specimen and two converging fronts separating ðMþÞ and ðAÞ phases propagate through the specimen
converting regions of low strain in regions of high strain. As the fronts propagate the local temperature
increases as it can be seen in Fig. 3(b), while the end-stress vs. engineering strain curve exhibits a ‘saw-tooth’
like behavior. Each drop in load is accompanied by a sudden increase of the temperature in the transformed
zone of about 1:5–2:5 �C. Although at the scale of Fig. 3(b) the transformation fronts appear to propagate
with constant velocity, in reality if we look in some detail we observe that in fact they advance by small
steps which accompany the oscillations of the load (‘go-and-stop’ strain band propagation). The propa-
gating fronts coalesce with the stationary fronts leaving two moving fronts propagating towards each other.
As they approach each other local heating intensifies due to their interaction and the local temperature at
the middle of the bar briefly flares at the end of the experiment until 41.1 �C. After the specimen is entirely
transformed the deformation becomes again homogeneous requiring a significant increase in stress while
the temperature starts to return to ambient.
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Fig. 3. Strain-controlled experiment at _eee ¼ �5
 10�4: (a) pseudoelastic behavior; (b) ðAÞ ! ðMþÞ transformation and heating of the

bar during loading; (c) end-stress and temperature evolution during relaxation; (d) ðMþÞ ! ðAÞ transformation and cooling of the bar

during unloading.
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Such behavior is in very good agreement with laboratory tests performed by Shaw and Kyriakides
(1997) (see also Leo et al., 1993) which illustrate that the ðAÞ ! ðMþÞ transformation is an exothermic
one.

At t2 we simulate a pause during loading and unloading experiments maintaining fixed the ends of the
bar. During this relaxation process the end-stress decreases from 140 to 139.42 MPa while the temperature
decreases in the middle of the bar from 37.86 to 37 �C (Fig. 3(c)). Let us note that the relaxation of the stress
as it is described by the present approach (see also Fig. 4(c)) and Fig. 6(c)) is due mainly to the thermo-
mechanical coupling and to the heat transfer between the bar and its surrounding and not especially to the
viscosity incorporated in the model. Relaxation processes are also predicted by the shape memory model
used by Balandraud et al. (2000) (see also the references therein) when including the thermo-mechanical
coupling of the material with its environment.

When the unloading test starts the stress decreases linearly and the material deforms homogeneously in
the ðMþÞ phase without significant changes in the temperature distribution. At a low enough stress level
austenite nucleates at the ends of bar where the temperature is lower with respect to the rest of the bar due
to the imposed boundary conditions. Two fronts start almost simultaneously propagating towards each
other at an apparent constant speed. The nucleation or propagation of ðAÞ zones inside ðMþÞ zones is
accompanied by a sudden raise of the stress (peaks) on the stress–engineering strain curve as can be seen in
Fig. 3(a) while the local temperature briefly drops with about 1.5–2.5 �C. The temperature in the neigh-
borhood of the propagating fronts decreases more and more as the fronts approach each other thermally
interacting and attains a minimum value of 33.�C at the middle of the specimen. When the two fronts meet
the whole bar has completely reverted to ðAÞ. Subsequent to this moment ðAÞ unloads elastically, the de-
formation being homogeneous and the temperature returning to ambient (see Fig. 3(d)).

This proves that our model is able to describe the endothermic and non-homogeneous character of
the reverse transformation as it was experimentally observed by Shaw and Kyriakides (1997) in NiTi strips.

4.2. Experiment at displacement rate of _eee ¼ v	=L ¼ 5
 10�3 s�1

In this experiment t1 ¼ 9:22 s, t2 ¼ 19:22 s, t3 ¼ 28:44 s and the time-step used to record the strain and
temperature distribution over the bar is 0:10079 s. These data were used to plot the 3D diagrams in Fig. 4.

During loading (Fig. 4(b)) as well as during unloading (Fig. 4(d)) in this higher rate experiment the
number of propagating fronts in the specimen is higher than in the previous one. Each ðAÞ ! ðMþÞ=
ðMþÞ ! ðAÞ transformed zone experiences an increase/decrease in temperature while successive ‘valley’/
‘peaks’ are observed on the stress–engineering strain curve in Fig. 4(a). As any two fronts meet the tem-
perature momentarily flares/drops down because the corresponding zone receives/releases heat from two
sides. As the fronts propagate the hot/cold zones in Fig. 4(b) and (d) spread and the local temperatures go
up/down to 47:4 �C=27:2 �C at the end of the transition processes. Such an important increase/decrease in
temperature (about 10 �C) is due to the fact that the heat released/absorbed by the transforming material
cannot be exchanged with the exterior of the bar in such a short time interval. Finally the deformation is
again homogeneous and the stress increases/decreases significantly with the slope of the elastic modulus
E3=E1.

In this higher rate experiment the difference between the temperature of the bar at the end of the loading
process and the ambient temperature is much higher than in the previous one. Consequently, during the
relaxation process represented in Fig. 4(c) the end-stress decreases in 10 s with about 4 MPa, i.e., from 140
to 136.07 MPa while the temperature decreases at the middle of the bar with 6.3 �C, i.e., from 45.3 to 39 �C.

The details concerning the evolution of transformation and temperature fronts are interesting and
worthy of a closer attention. Some of the observed features are described below.

Fig. 5(a) shows a zoom of the third stress-drop in Fig. 4(a). Five points are labeled successively on this
curve representing the positions where the strain and temperature distribution in the bar was recorded.
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Fig. 4. Strain-controlled experiment at _eee ¼ �5
 10�3: (a) pseudoelastic behavior; (b) ðAÞ ! ðMþÞ transformation and heating of the

bar during loading; (c) end-stress and temperature evolution during relaxation; (d) ðMþÞ ! ðAÞ transformation and cooling of the bar

during unloading.

3822 C. F�aaciu, M. Mih�aailescu-Suliciu / International Journal of Solids and Structures 39 (2002) 3811–3830



Fig. 5. Zoom of the third stress drop in Fig. 4(a) and the strain and temperature distribution at the labeled positions.
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Fig. 6. Strain-controlled experiment at _eee ¼ �5
 10�2: (a) pseudoelastic behavior; (b) ðAÞ ! ðMþÞ transformation and heating of the

bar during loading; (c) end-stress and temperature evolution during relaxation; (d) ðMþÞ ! ðAÞ transformation and cooling of the bar

during unloading.
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The corresponding graphs are represented in Fig. 5(b). Let us note that before the stress-drop, at the
position 1, martensite is localized at the ends of the bar and in their proximity the temperature is slightly
increased. Moreover, we can observe the sites where the nucleation of the martensite will further appear.
Thus at the position 2 the localization of strain starts to develop and the local temperature to increase.
When the stress drops rapidly with 10 MPa the strain as well as the temperature in the transformed zone
tend to their maximum values (see graph 3 in Fig. 5(b). Thus the local temperature increases with about 3
�C. At the beginning of the ascending part of the curve in Fig. 5(a) the localization of strain is com-
plete and permanent while the temperature starts to dissipate in the rest of the bar through axial diffu-
sion and to the environment through lateral radiation as can be seen on the graphs 4 and 5 in Fig. 5(b).
It is useful to note that the initiation sites of the ðMþÞ phase can be already seen on the graphs 5 in
Fig. 5(b).

This example shows that if the temperature distribution over the bar is recorded on the descending part
of the ‘valley’ where the local temperature flares we can capture its maximum values during phase prop-
agation. On the other hand, if the temperature distribution is recorded on the ascending part of the ‘valley’
where the temperature dissipates and the phase transformation fronts are arrested then we loose some
information concerning the amplitude of the heating process. This situation is illustrated by Fig. 3(a).
During loading the positions of the points where the temperature and strain distribution were recorded are
labeled with small circles. We can see that the lower is the positions of this circles on the descending part of
the valley the higher is the amplitude of the temperature of the propagating fronts. When the small circles
are located on the ascending part of the ‘valley’ (for _eee > 0:03 in Fig. 3(a)) it is obvious that the peaks of the
temperature which accompany the phase transformation process are lost and a distortion in the evolution
of the temperature in Fig. 3(b) has to be observed. This is only a technical inconvenience of recording data
at constant time intervals, which is similar to a laboratory situation.

What is in fact important is that our model can describe that even at the relatively slow rate test as in Fig.
5 the specimen experiences self heating in the neighborhood of the propagating transformation fronts. This
is in good agreement with the physical observation that the environment could not dissipate heat at the rate
that heat was being released by the transforming material (Shaw and Kyriakides, 1997).

4.3. Experiment at displacement rate of _eee ¼ v	=L ¼ 5
 10�2 s�1

This experiment could be considered a relatively high rate test and the thermal effects are more important
than in the previous ones. Here t1 ¼ 0:9187 s, t2 ¼ 10:9187 s, t3 ¼ 22:7562 s and the time-step used to record
the strain and temperature distribution over the bar is 0:010079 s. These recorded data were used to plot the
3D diagrams in Fig. 6.

It is obvious that multiple nucleations of the new phase appear, resulting in the coexistence and si-
multaneous propagation of several transformation fronts (see Fig. 6(b) and (d)). The temperature increases/
decreases at the end of the loading/unloading test until 51:88 �C=26:25 �C. One can also see in Fig. 6(a)
there is a closer correlation between the structure of the transformation fronts and of the temperature
fronts.

Due to the sensitivity of the model to temperature during the relaxation process illustrated in Fig. 6(c)
the end-stress decreases in 10 s with about 7 MPa, i.e., from 140 to 133.4 MPa while the temperature
decreases at the middle of the bar with 8.7 �C, i.e., from 48.7 to 40.07 �C.

Another interesting aspect from the experimental point of view concerns the influence of the strain rate
on the stress–engineering strain response. One can see that the level of the upper branch of the hysteresis
loop raises for higher strain rate tests while the lower branch of the hysteresis loop descends. This effect is
due mainly to the increase/decrease in temperature of the specimen as can be seen from Fig. 6(a). Con-
sequently, one can observe that the area of the hysteresis loop increases at higher end-displacement rates.
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The number of stress oscillations during loading/unloading in Fig. 3(a) corresponds to the number of
nodes used. Since during a slow constant strain-rate test the amount of the nucleated phase is proportional
to the amplitude of the accompanying stress drop (see F�aaciu, 1996) a refined mesh could lead to small and
irregular serrations on the stress–engineering strain curve as those in Fig. 3(a). On the other hand a refined
mesh could also lead to new locations of forming phase boundaries, but the kinetics of transformation
fronts (go and stop propagation) and the global measures of the type end-stress vs. engineering strain
always exhibit the same trends. A systematic study will be done elsewhere although it could be limited by
the high computational effort.

Let also note that the stress fluctuations obtained in the experiments performed at higher strain rates like
those in Figs. 4(a) and 6(a) are not so angular due to a higher local rate of heating/cooling and consequently
to the stabilizing effects of self-heating/cooling.

5. Summary and final remarks

In this paper a new model of austenitic–martensitic phase transitions in shape memory alloy bars or
wires based on a Maxwell-type viscous dissipation has been considered. In addition to inertia term and non-
monotone thermoelastic stress–strain law the approach includes thermal dissipation in the form of heat
conduction in the bar and convection across the lateral surface of the bar. It is a natural continuation of
previous works (Suliciu, 1992; F�aaciu and Suliciu, 1994; F�aaciu, 1996) on a purely mechanical model of
austenitic–martensitic phase transitions. For the thermo-viscoelastic model with Maxwellian viscosity there
is a stress–strain-temperature free energy function uniquely determined by the associated thermoelastic
model r ¼ rRðe; hÞ, specific heat C at constant strain in the austenitic phase and the dynamic Young’s
modulus E. The obtained free energy function allows us to establish the appropriate heat propagation
equation for our phase transforming material. Let us note that since the thermoelastic constitutive relation
is only continuous in strain and temperature we get a partial differential equation with discontinuous co-
efficients on their domain of definition.

Numerical simulations for three constant strain-controlled rates in room temperature air were presented
and they illustrate a good qualitative agreement with the full-field measurements of strain and temperature
fields of Shaw and Kyriakides (1997). The number of nucleation events and the calculated evolution of
strain and temperature fields combined with the stress–engineering strain response are similar to those
measured in laboratory experiments. During unstable transformations, strain is clearly inhomogeneous and
local dynamic effects result at end-displacement rates one might normally consider quasistatic. Due to the
strong thermo-mechanical interactions heat is released or absorbed in discrete local regions.

It is worth to mention that numerical simulations of the thermo-mechanical behavior of a NiTi shape
memory alloy were also considered by Shaw (2000) who used a traditional finite-plasticity constitutive
model with an up–down–up trilinear stress–strain response. The irreversible nature of plasticity model
limited applicability of the analysis to the A ! Mþ transformation during loading. Our approach has the
advantage that it allows to describe both direct (A ! Mþ) and reverse (Mþ ! A) transformations.

It is known that, in general, the predictions of the SMA constitutive models were investigated by ne-
glecting inertial effects although material instabilities can be observed in the pseudoelastic behavior of
certain alloys (Shaw and Kyriakides, 1997). Consequently these models are not able to acknowledge
differences between stress-controlled and strain-controlled tests. Unlike these models our approach is
extremely sensitive to the boundary conditions. Thus, in quasistatic strain-controlled problems it pre-
dicts serrated hysteresis loops while in stress-controlled problems it predicts non-serrated hysteresis loops
(see F�aaciu and Mih�aailescu-Suliciu, 2001b; F�aaciu and Suliciu, 1994) as it was observed in laboratory ex-
periments.
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Appendix A

We describe here the assumptions which lead us to the equilibrium stress–strain-temperature relation
(16).

First, due to the symmetry of the two variants of martensite we require r�
MðhÞ ¼ �rþ

MðhÞ and
r�
mðhÞ ¼ �rþ

mðhÞ, for any h 2 ½hm; hM �. Then, since the function r ¼ rRðe; hÞ in (14) has to be continuous we
get

rþ
MðhÞ ¼

E1

2
ðeþMðhÞ � e�MðhÞÞ; rþ

mðhÞ ¼ E2ðe�mðhÞ � e�MðhÞÞ þ
E1

2
ðeþMðhÞ � e�MðhÞÞ: ðA:1Þ

In order that relation (14) describes a piecewise linear thermoelastic behavior we require the functions
e ¼ e�mðhÞ and e ¼ e�MðhÞ to be linear in h as well as the functions r ¼ r�

mðhÞ and r ¼ r�
MðhÞ. Moreover,

according to our previous thermo-mechanical assumptions (see Fig. 1), they have to satisfy the following
conditions: rþ

MðhMÞ ¼ rþ
mðhMÞ, eþMðhMÞ ¼ eþmðhMÞ, e�MðhMÞ ¼ e�mðhMÞ; rþ

MðhmÞ ¼ 0, and eþMðhmÞ ¼ e�MðhmÞ.
Now by assuming that the undeformed material in the ðAÞ phase is stress-free at a reference temperature

hT , i.e., rRð0; hT Þ ¼ 0 we get

eþMðhÞ ¼ aðh � hT Þ þMðh � hmÞ; eþmðhÞ ¼ aðh � hT Þ � ðM � mÞðh � hMÞ þMðh � hmÞ;
e�MðhÞ ¼ aðh � hT Þ �Mðh � hmÞ; e�mðhÞ ¼ aðh � hT Þ þ ðM � mÞðh � hMÞ �Mðh � hmÞ

ðA:2Þ

and

rþ
MðhÞ ¼ �r�

MðhÞ ¼ E1Mðh � hmÞ;
rþ
mðhÞ ¼ �r�

mðhÞ ¼ E2ðM � mÞðh � hMÞ þ E1Mðh � hmÞ;
ðA:3Þ

where a ¼ const: >0 is the thermal expansion coefficient of the material in phase ðAÞ and M ¼ const: >0,
m ¼ const: >0 are other two material constants.

Since the boundaries of the ðAÞ, ðMþÞ and ðM�Þ regions in the ðe; hÞ plane have to satisfy the inequalities

� 1 < e�mðhÞ < e�MðhÞ < eþMðhÞ < eþmðhÞ for any h 2 ðhm; hMÞ;
� 1 < e�mðhÞ < eþmðhÞ for any h	

1 < h < hm;
ðA:4Þ

we derive the following restrictions on the material parameters entering (A.2) and (A.3)

0 < a < m < M ; aðhM � hT Þ �MðhM � hmÞ > �1: ðA:5Þ

Let us specify the meaning of the two constants m and M. It is known that one can experimentally
determine the dependence of nucleation stress on temperature (see for instance Fig. 7 in Shaw and Ky-
riakides (1997)). According to relations (A.3), E1M and E1M þ E2ðM � mÞ describe the rate at which the
stress required for ðAÞ ! ðMþÞ and ðMþÞ ! ðAÞ transformations, respectively, vary with respect to the
temperature. Thus the two constants m andM may be determined when the elastic moduli Ei, i ¼ 1; 2; 3 are
already known.
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Appendix B

In this section we give a brief description of the free-energy function of the thermo-viscoelastic model
(5)1 for the equilibrium stress–strain-temperature relation (16).

Let us note that according to (11) the equilibrium free energy function is given by

.ŵwRðe; hÞ ¼
Z e

0

rRðs; hÞdsþ /ðhÞ: ðB:1Þ

We determine the unknown function of temperature /ðhÞ in (B.1) (and (11)) by assuming that the
specific heat at constant strain of the thermoelastic material r ¼ rRðe; hÞ is constant in the austenitic phase,
i.e.,

�h
o2ŵwR

oh2
ðe; hÞ ¼ C ¼ const: for e 2 ðe�MðhÞ; eþMðhÞÞ; ðB:2Þ

From (B.1) and (B.2) we obtain

/ðhÞ ¼ .ŵwRðe0; ~hhÞ þ .ðh � ~hhÞðC � ĝgRðe0; ~hhÞÞ � .Ch lnðh=~hhÞ; ðB:3Þ

where e0 � e�MðhmÞ ¼ aðhm � hT Þ is the only strain value which belongs to the austenitic phase for any
h 2 ½hm; hM � and ~hh 2 ½h	

1; h
	
2� is an arbitrarily fixed value of the temperature. If we choose for instance ~hh ¼ hT ,

qŵwRðe0; hT Þ ¼ hTC and ĝgRðe0; hT Þ ¼ 0 then the expression of ŵwRðe; hÞ on the intervals corresponding to
phases ðAÞ, ðMþÞ and the spinodal region ðIþÞ for the proposed equilibrium surface (16) when h 2 ½hm; hM � is

.ŵwRðe; hÞ ¼ .hCð1� lnðh=hT ÞÞ þ

E1

2
e2 � E1aðh � hT Þe for e 2 ½e�MðhÞ; eþMðhÞ�;

�E2

2
e2 þ ½E2aðh � hT Þ þMðE1 þ E2Þðh � hmÞ�e þ v1ðhÞ
for e 2 ðeþMðhÞ; eþmðhÞÞ;

E3

2
e2 � ½E3aðh � hT Þ � ðE2 þ E3ÞðM � mÞðh � hMÞ
�ðE1 � E3ÞMðh � hmÞ�e þ v2ðhÞ
for e 2 ½eþmðhÞ; e	2ðhÞÞ;

8>>>>>><
>>>>>>:

ðB:4Þ

where

v1ðhÞ ¼ � ðE1 þ E2Þ
2

½aðh � hT Þ þMðh � hmÞ�2;

v2ðhÞ ¼
ðE3 � E1Þ

2
aðh½ � hT Þ þ Mðh � hmÞ�2 � ðM � mÞðE2 þ E3Þðh � hMÞ


 aðh



� hT Þ þ Mðh � hmÞ �
ðM � mÞ

2
ðh � hMÞ

�
:

ðB:5Þ

Let us note that the coefficient of thermal expansion of the thermoelastic constitutive equation we

propose here, i.e. � o2ŵwR
oeoh

.
o2ŵwR
oe2 ; is a piecewise constant function on its domain of definition. For in-

stance, on the ðAÞ-region ðe 2 ½e�MðhÞ; eþMðhÞ�Þ it is equal to a, on ðIþÞ-region (e 2 ½eþMðhÞ; eþmðhÞ�), it is equal
to a þMð1þ E1=E2Þ, while on ðMþÞ-region (e > eþmðhÞ) it is equal to a þ mðE3 þ E2Þ=E3 �MðE1 þ E2Þ=E3.
The specific heat function at constant strain is also discontinuous and has for example the following
values:

�h
o2wR

oh2
¼

C for e 2 ½e�MðhÞ; eþMðhÞ�;
C þ ðE1þE2Þ

. ða þMÞ2h for e 2 ðeþMðhÞ; eþmðhÞÞ;
C þ ½ðE1�E2Þ

. ða þMÞ2 þ ðE2þE3Þ
. ðM � mÞðM þ mþ 2aÞ�h for e 2 ½eþmðhÞ; e	2ðhÞÞ:

8><
>: ðB:6Þ
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Since in this paper we only investigate the capability of the model to describe stress-induced ðAÞ � ðMþÞ
phase transitions we give bellow a partial description of the free energy function w ¼ ŵwðe; r; hÞ of the
thermo-viscoelastic model as it was deduced by F�aaciu and Mih�aailescu-Suliciu (2001a):

.̂.wðe; r; hÞ ¼ r2

2E
þ E2

1a
2

2ðE � E1Þ
ðh � hT Þ2 þ .hCð1� lnðh=hT ÞÞþ

E1

2EðE�E1Þ
ðr � EeÞ2 þ E1a

2

ðE�E1Þ
ðh � hT Þðr � EeÞ for sþMðhÞ6 r � Ee6 s�MðhÞ;

� E2

2EðEþE2Þ
ðr � EeÞ2 þ u1ðhÞ

� E2a
ðEþE2Þ ðh � hT Þ þ ðE1þE2ÞM

ðEþE2Þ ðh � hmÞ
h i

ðr � EeÞ for sþmðhÞ < r � Ee < sþMðhÞ;
E3

2EðE�E3Þ
ðr � EeÞ2 þ u2ðhÞ þ ðr�EeÞ

ðE�E3Þ
½E3aðh � hT Þ

�ðE2 þ E3ÞðM � mÞðh � hMÞ � ðE1 � E3ÞMðh � hmÞ� for r � Ee6 sþmðhÞ;

8>>>>>>>>><
>>>>>>>>>:

ðB:7Þ

where

u1ðhÞ ¼ � ðE1 þ E2Þ
2ðE þ E2ÞðE � E1Þ

½Eaðh � hT Þ þMðE � E1Þðh � hmÞ�2;

u2ðhÞ ¼ u1ðhÞ þ
ðE2 þ E3Þ

2ðE þ E2ÞðE � E3Þ
½Eaðh � hT Þ þMðE � E1Þðh � hmÞ � ðM � mÞðE þ E2Þðh � hMÞ�2

ðB:8Þ

and

s�MðhÞ ¼ MðE � E1Þðh � hmÞ � Eaðh � hT Þ;
sþMðhÞ ¼ �MðE � E1Þðh � hmÞ � Eaðh � hT Þ;
sþmðhÞ ¼ sþMðhÞ þ ðh � hMÞðM � mÞðE þ E2Þ:

ðB:9Þ
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